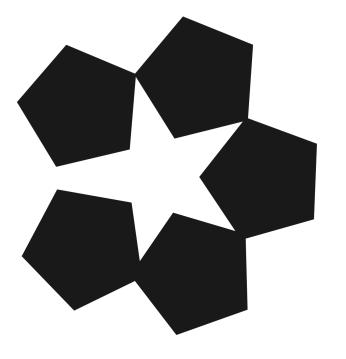
MObI: Multimodal Object Inpainting Using Diffusion Models

Alexandru Buburuzan^{1,2} Anuj Sharma¹ John Redford¹ Puneet K. Dokania^{1,3} Romain Mueller¹

¹Five AI ²The University of Manchester ³University of Oxford



FIVE

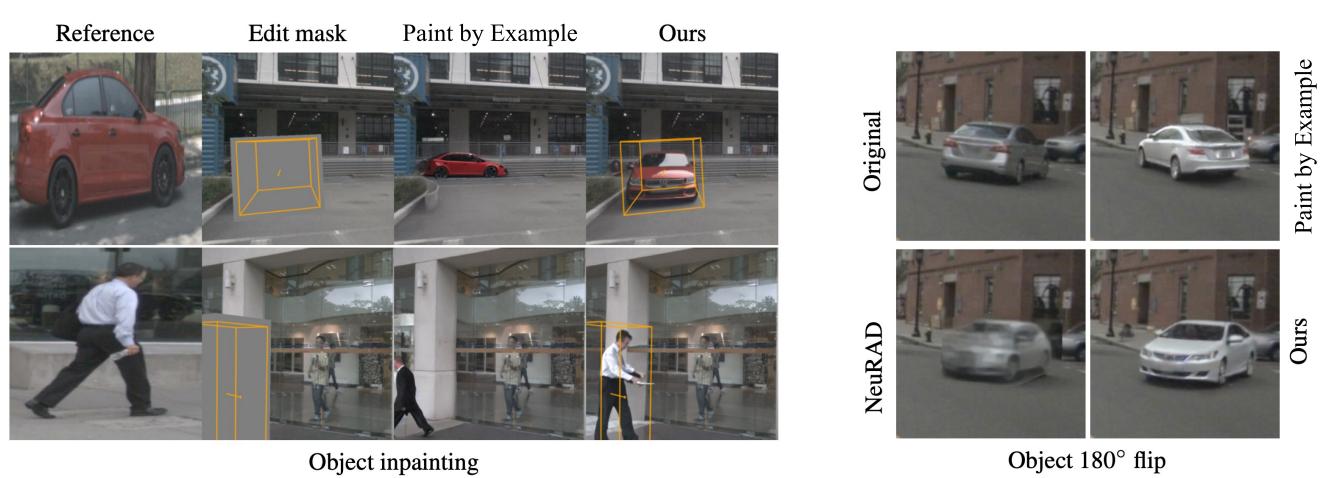
The University of Manchester

Overview Original scene Mask and context Latent diffusion process 3D-conditioned inpainting Camera Camera Reference 3D Box Reference 3D Box

Extensive, realistic, and controllable multimodal data is critical for rigorous testing of safety-critical applications like autonomous driving, as real-world data collection is costly and complex. We introduce *MObI*, a framework for Multimodal Object Inpainting that uses a diffusion model to insert realistic objects into driving scenes across camera and lidar, jointly.

Conditioned on a single reference image and a 3D bounding box, MObI achieves semantic consistency, realistic spatial integration, and multimodal coherence. Our approach supports flexible, high-fidelity object insertion, offering a practical tool for *generating counterfactuals* and testing perception models.

Motivation



Inpainting methods based on edit masks alone achieve high realism but can lead to surprising results since there are multiple semantically consistent ways to inpaint an object; 3D reconstruction methods are controllable but may lack realism for unobserved viewpoints.

Method x^(R) ⊙ m̄^(R) y cent cent

- We extend Paint-by-Example a reference-guided image inpainting diffusion model, to include *3D bounding box conditioning* and to *jointly generate camera and lidar* by finetuning sandwiched attention layers.
- We adapt the *image autoencoder of Stable Diffusion* to the range view modality.

Ref. image Original scene Edited scenes Tigar debth Camera Trigar debth Camera

Realism performance for camera and lidar demonstrates strong results across diverse insertion (using the same reference and temporal tracking) and replacement (in-domain and cross-domain reference) settings.

	MAP		Restricted to reinserted objects					
			ATE		ASE		AOE	
	car	ped.	car	ped.	car	ped.	car	ped
Original Reinsertions	0.885 0.878	0.873 0.863	0.145 0.299	0.103 0.140	0.138 0.145	0.278 0.303	0.024 0.161	0.46 0.75

Camera-lidar detection performance
of an off-the-shelf BEVFusion
[ICRA'23] object detector on objects
reinserted using our method.

Discussion

- We introduce MObI, a method for realistic and controllable multimodal object inpainting across camera and lidar views.
- Results show strong spatial coherence, yet limitations remain in handling open-world references, extreme placements, and overlap with existing objects.
- Despite this, we think our approach offers an interesting, novel avenue to edit multimodal scenes in a realistic and controllable manner.

https://alexbubu.com/mobi