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diffusion model to insert realistic objects into driving scenes across camera and lidar, jointly. * We extend Paint-by-Example a reference-guided image inpainting diffusion model, to
include 3D bounding box conditioning and to jointly generate camera and lidar by Realism performance for camera and lidar demonstrates strong results across diverse
Conditioned on a single reference image and a 3D bounding box, MObI achieves semantic finetuning sandwiched attention layers. insertion (u§1ng the same ref.erence and temporal tracking) and replacement (in-domain and
consistency, realistic spatial integration, and multimodal coherence. Our approach supports s * We adapt the ezmage autoencoder of Stable Diffusion to the range view modality. ) cross-domain reference) settings.
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* We introduce MODbI, a method for realistic and
controllable multimodal object inpainting across
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camera and lidar views.

2 * Results show strong spatial coherence, yet limitations
> cc . :
5 g remain in handling open-world references, extreme
O placements, and overlap with existing objects.
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Inpainting methods based on edit masks alone achieve high realism but can lead to
surprising results since there are multiple semantically consistent ways to inpaint an object;

* Despite this, we think our approach otfers an
interesting, novel avenue to edit multimodal scenes in
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3D reconstruction methods are controllable but may lack realism for unobserved viewpoints. a realistic and controllable manner.
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